Q	.P. Code: 18CE0114		R1	8
R	leg. No:			
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::	PUTTUI	R	
	(AUTONOMOUS)			
	B.Tech III Year I Semester Supplementary Examinations December	-2021		
	HYDRAULIC ENGINEERING			
	(Civil Engineering)			
T	me: 3 hours	Max. M	larks:	60
	PART-A			
	(Answer all the Questions $5 \times 2 = 10$ Marks)			
a	Define specific energy.		L1	1
b	Define hydraulic jump.		L1	1
с	Define overall efficiency of turbine.		L1	
d	Give any two limitations of distorted models.		L1	2
e	Name any four efficiencies of a hydraulic turbine		L1	2
	PART-B			
	(Answer all Five Units $5 \ge 10 = 50$ Marks)			
	UNIT-I			
a	Derive an expression for maximum velocity of flow through a circular section.		L3	
		C 1	TO	

2M 2M 2M 2M 2M

1

2

a	Derive an expression for maximum velocity of flow through a circular section.	L3	5M
b	Determine the expression for the most economical trapezoidal section in terms of side	L3	5M
	slope.		
	OR		

3	a	Derive the condition for a rectangular channel to be most efficient	L3	5M
	b	Explain the term specific energy of a flowing liquid and derive the condition for critical	L2	5M
		depth.		

UNIT-II

4	What are assumptions of gradually varied flow? Derive the Dynamic equation of gradually varied flow	L2	10M
	OR		
5	a Derive an expression for hydraulic jump in rectangular channel	L3	5M
	b What are the applications of hydraulic jump?	L1	5M
	UNIT-III		
6	a Derive the equation for force exerted by a jet on stationary inclined flat plate	L3	5M
	b Find the force exerted by a jet of water of diameter 75mm on a stationary flat	L3	5M
	plate, when the jet strikes the plate normally with velocity of 20m/s		
	OR		
7	Obtain the expression for the force exerted by jet of water on a fixed vertical plate in the	L3	10M
	direction of the jet.		
	UNIT-IV		
8	A centrifugal pump is to discharge 0.118m3/sec at a speed of 1450r.p.m. against a head of	L3	10M
	25m. The impeller diameter is250mm, its width at outlet is 50mm and manometric		
	efficiency is 75%. Determine the vane angle at the outer periphery of the impeller.		
	OR		
9	a What are different types of dimensionless numbers? Explain them.	L1	5M
	b Define the terms: model, prototype, hydraulic similitude.	L1	5 M
	UNIT-V		

10 aWhat is a turbine and give the classification in detail? Give the various efficiencies.L15MbExplain Radial flow reaction turbine with a neat diagram.L25M

Q.P. Code: 18CE0114

R18

OR

- 11 a Define (i)speed ratio (ii) Flow ratio (iii) Diameter of turbine (iv)Radial discharge. L2 5M
 - b Define the term unit power, unit speed and unit discharge with reference to a hydraulic L3 5M turbine. And also derive the expression for these terms.

END	